Page no.	Error description	Corrected version
p. 45	Fig. 2.27: The presented molecular orbitals are wrong	Fig. 2.27
p. 63	Eqn. 2.75: Förster radius factor 1000 to large.	$R_{0}^{6}=\frac{9 Q_{0} \kappa^{2} J \ln 10}{128 \pi^{5} n^{4} N_{A}}$
p. 77	Eqn. 2.98/2.99 (Bässler model)	$\begin{gathered} \mu\left(\hat{\sigma}, \sigma_{\Gamma}, E\right)=\mu_{0} \exp \left(-\left(\frac{2}{3} \hat{\sigma}\right)^{2}\right) \exp \left(C\left(\hat{\sigma}^{2}-\sigma_{\Gamma}^{2}\right) E^{\frac{1}{2}}\right) \\ \text { for } \sigma_{\Gamma} \geq 1.5 \\ \mu\left(\hat{\sigma}, \sigma_{\Gamma}, E\right)=\mu_{0} \exp \left(-\left(\frac{2}{3} \hat{\sigma}\right)^{2}\right) \exp \left(C\left(\hat{\sigma}^{2}-2.25\right) E^{\frac{1}{2}}\right) \\ \text { for } \sigma_{\Gamma}<1.5 \end{gathered}$
p. 84	Eqn. 2.10/11 (Poisson Eqn.)	In n-type region: $\quad \frac{d^{2} \Phi}{d x^{2}}=-\frac{q}{\epsilon} N_{d} \quad$ for $\quad x>0$ In p-type region: $\quad \frac{d^{2} \Phi}{d x^{2}}=\frac{q}{\epsilon} N_{a} \quad$ for $\quad x<0$
p. 113	Fig. 3.14, Figure Caption	Replace $\mathrm{R}_{\text {s }}$ with $\mathrm{R}_{\text {sh }}$.
p. 129	Fig. 3.28	(c) Time: 57.3 fs , (d) Time: 98.7 fs
p. 142	Fig. 3.40 (b), Color code of lines in graph are inverted compared to legend.	Fig. 3.40
$\begin{aligned} & \text { p. } \\ & 181 \end{aligned}$	Fig. 3.69 Figure color for curves swapped (dark bue bottom curve, bright blue top curve)	Fig. 3.69
$\begin{aligned} & \text { p. } \\ & 198 \end{aligned}$	Eqn. 4.5 (reciprocity relation): Replace q with J.	$J_{0} E Q E_{E L}(\lambda)=J E Q E_{P V}(\lambda) I_{B B}(\lambda)$
$\begin{aligned} & \text { p. } \\ & 204 \end{aligned}$	Fig. 4.5 Sheet resistance measurements	Current is applied between the outer two pins, whereas the voltage is measured across the inner contacts. (Same valid for text above Figure 4.5.)
$\begin{aligned} & \text { p. } \\ & 218 \end{aligned}$	Eqn. 4.29 (and text), replace A with Abs	$I Q E(\lambda)=\frac{E Q E(\lambda)}{A b s(\lambda)}$
$\begin{aligned} & \text { p. } \\ & 223 \end{aligned}$	Eqn. 4.35, replace " q " with "-"	$n_{\text {int }}=N_{C} \exp \left(-\frac{E_{\text {gap }}}{2 k_{B} T}\right)$
$\begin{aligned} & \text { p. } \\ & 223 \end{aligned}$	Eqn 4.38, missing R	$\frac{1}{q} \frac{\partial}{\partial z} J(z)=P G-(1-P) \cdot R$
p. 224	Egn 4.43/44/47 and text	Replace log with In.
p. 235	Tab. 4.1 (Symbol for Capacitance)	

Fig. 2.27 (page 45): Molecular orbitals around the HOMO-LUMO gap in pentacene. The molecular structure is shown in the center along with the four highest occupied and the four lowest unoccupied molecular orbitals. Blue and red indicate positive and negative phases of the wave function.

Forward
$\mathrm{J}_{\mathrm{sc}}=18 \mathrm{~mA} / \mathrm{cm}^{2}$
$\mathrm{V}_{\text {oc }}=1.0 \mathrm{~V}$
$\mathrm{FF}=0.55$
$\eta=9.9 \%$
Reverse
$\mathrm{J}_{\mathrm{sC}}=18 \mathrm{~mA} / \mathrm{cm}^{2}$
$\mathrm{V}_{\mathrm{oc}}=1.1 \mathrm{~V}$
FF=0.68
$\eta=13.5 \%$

Fig. 3.69 (page 181): Example for reporting a J-V characteristic of a perovskite solar cell. In the characteristic a value for a steady-state photocurrent density at short-circuit, open-circuit voltage and close to the maximum power-point is given (cross in circle) and scan direction and rate are reported. The scan started with the steady-state value close to the maximum power point in forward direction to V_{oc} and reverse to J_{sc}, before going in forward direction to V_{oc} again.

Tab. 4.1 (page 235): Overview of the most important circuit elements used in impedance spectroscopy. The dc qantity is given along with the complex impedance that has to be taken into account for ac circuits.

Circuit element	dc quantity	impedance	symbol
Resistance	R	R	-C
Capacitance	C	$(i \omega C)^{-1}$	$\rightarrow-$
Constant Phase Element	Q	$(i \omega Q)^{-n}, 0<n \leq 1$	$\rightarrow-$
Inductance	L	$i \omega L$	$\rightarrow \mathbf{m L}$

